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THE INTERACTING
BOSON-FERMION MODEL-1



1

Operators

1.1 Introduction

In many cases in physics, one has to deal simultaneously with col-
lective and single-particle excitations of the system. The collective
excitations are usually bosonic in nature while the single-particle
excitations are often fermionic. One is therefore led to consider
a system which includes bosons and fermions. In this book we
discuss applications of a general algebraic theory of mixed Bose—
Fermi systems to atomic nuclei. The collective degrees of freedom
here can be described in terms of a system of interacting bosons
as discussed in a previous book (Iachello and Arima, 1987), hence-
forth referred to as Volume 1. The single-particle degrees of
freedom represent the motion of individual nucleons in the av-
erage nuclear field. They are described in terms of a system of
interacting fermions. The coupling of fermions and bosons leads
to the interacting boson—fermion model which has been used ex-
tensively in recent years to discuss the properties of nuclei with
an odd number of nucleons.

The interacting boson—-fermion model was introduced by Arima
and one of us in 1975 (Arima and Tachello, 1975). It was subse-
quently expanded by Iachello and Scholten (1979) and cast into
a form more readily amenable to calculations. As in the corre-
sponding case of even-mass systems, the algebra of creation and
annihilation operators can be realized in several ways. One of
these is the Holstein—Primakoff realization which leads to a slightly
different version of the interacting boson—fermion model called the
truncated quadrupole phonon—fermion model (Paar, 1980; Paar
and Brant, 1981), based on the boson realization introduced by
Janssen, Jolos and Ddnau in 1974 and discussed in Sect. 1.4.6 of

3



4 1 Operators

Volume 1. In this book we discuss only the algebraic and geo-
metric properties of the interacting boson-fermion model. The
microscopic origin and justification will be dealt with in a sub-
sequent book. As in the case of even-mass systems, there are
several versions of the model which differ in their treatment of
the proton and neutron degrees of freedom. In the first version,
called the interacting boson-fermion model-1 (IBFM-1) and dis-
cussed in Part I of this book, no distinction is made between
protons and neutrons. In the other versions of the model they are
treated explicitly. The interacting boson—fermion model-2 (IBFM-
2) applies to nuclei where protons and neutrons occupy different
valence shells, while the interacting boson-fermion model-3 and
4 (IBFM-3 and IBFM-4) deal with lighter nuclei where protons
and neutrons occupy the same valence shell in which case isospin
becomes important. These will be discussed in Parts I and III.

1.2 Boson and fermion operators

In the interacting boson—fermion model the collective degrees of
freedom are described by boson operators. The properties of these
operators were discussed in great detail in Volume 1 and will be
only briefly reviewed here. To lowest order of approximation only
bosons with angular momentum and parity J* = 0% and 2%
are retained (s and d bosons). The corresponding creation and
annihilation operators are written as

bf

Im’

b (1=0,2-1 <m <), (1.1)

l,m?

or
bis b,; (a=1,...,6), (1.2)

and satisfy the commutation relations

[bl m’b ] - 511’6mm’7
[blm$b ] [blm’ 14 m’] = 0. (13)
or
[ba’ bL] 5&0'; [ba’ a‘] - [bl’bl] = 0. (14)



1.2 Boson and fermion operators 5

In addition to collective degrees of freedom, one wants to de-
scribe single-particle degrees of freedom. In nuclei, the single
particles are protons and neutrons. These are fermions. The an-
gular momentum and parity of these particles depends on the
allowed orbits as will be discussed in more detail in Part II. Here
we shall denote the angular momentum by j and its z2-component
by m. An interacting boson—fermion model is specified by the
number and the values of angular momenta retained. In treating
the single-particle degrees of freedom, it is also convenient to use
the formalism of second quantization and introduce the fermion
creation and annihilation operators

al ., (m=x1,£3.. 4j),
(m=%1,£3,...,%j).

2

(1.5)

@jmo

These operators satisfy anticommutation relations

{aj’m, a},,m:} = 6]'1-/6""”,,
{a; ma; i} ={alal .} =0, (1.6)

where the curly brackets denote an anticommutator, {4, B} =
AB + BA, for any two operators A and B. These have to be
contrasted with the commutation relations satisfied by the boson
operators, (1.3). There the square brackets denote a commutator,
[A,B] = AB — BA.

Instead of the double label j,m we shall use, at times, a single
index 7 and denote the operators by

al; a; (:=1,...,n), (1.7)

T

with anticommutation relations

{ai,af'} = 6,45 {ai’a'i’} = {af,afr} =0. (1.8)

Finally, it is assumed that boson and fermion operators
commute:

[bl,m’a'j’,m'] = [bl,m’a;’,m'] = [b;,m’aj’,m’] = [b;m7a’}’,m’] = 0’
(1.9)
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This is a natural assumption if bosons and fermions are elementary
particles. In nuclei, where bosons are composite particles (fermion
pairs), it is a model assumption. The effects of the compositeness
of the bosons are introduced through an additional interaction
(exchange interaction).

Spherical tensors can be constructed from the creation and
annihilation operators in the usual way. The creation opera-
tors already transform in the appropriate way. The annihilation
operators do not but one can introduce the operators

a; , = (—)]""‘aj’_m, (1.10)
that transform appropriately under rotations. With these oper-
ators one can form tensor products as discussed in Volume 1.
The phase convention (1.10), (=)’~™, is chosen to conform with
the majority of articles written on the interacting boson—fermion
model. This phase is still consistent with that used for the boson
operators, (— )™, Eq. (1.9) of Volume 1, since for bosons (integer
I) either choice, (—)"*™ or (—)"~™, gives the same result.

1.3 Basis states

In the formalism of second quantization, basis states can be
constructed by repeated application of creation and annihilation
operators on a vacuum state. For bosons the basis is:

B: bibl, ... o), (1.11)
while for fermions it is:
F:  alal...]o). (1.12)

Due to their commutation relations, a major difference between
boson and fermion operators is that, while one can put any number
of bosons in a certain state, one can place only one fermion in the
same state. This implies that

(«;3)2 o) =0, (1.13)
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that is, all indices in (1.12) must be different. The basis of the in-
teracting boson—fermion model is the product of (1.11) and (1.12),
usually written as

BF: alal ...btbl, ... ]o). (1.14)

Whether fermion operators are written to the left or to the right
of boson operators is not relevant since they commute with each
other.

It is also here convenient to construct states with good an-
gular momentum by coupling the boson and fermion operators
appropriately,

BF:  [lal xal x -+ x [bf x b} x - ]T2)){P[o). (1.15)

Since the angular momentum alone is, in general, not sufficient
to characterize the states uniquely, one needs extra labels. These
will be discussed in Chapter 2.

1.4 Physical operators
1.4.1 The Hamiltonian operator

The model Hamiltonian contains a part that describes the bosons,
Hy, a part that describes the fermions, Hp, and a part that
describes the interaction between bosons and fermions, Vp,

H=Hy+ Hy + V. (1.16)

In the interacting boson-fermion model it is assumed that the
Hamiltonian conserves separately the number of bosons, N, and
the number of fermions, Np. The structure of the various parts of
the Hamiltonian operator is then as in Eq. (1.19) of Volume 1,

Hy =E, + zfaﬂblbﬂ + E b bl b+ -oe,
af aa’ BB
F_g +Zn1ka a’k+ Z 2 ,,,kk,aa,akak,+...’
it'kk’!
Vap = 3 wogblalbsa, +---. (1.17)

aifk
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This Hamiltonian can be rewritten in such a way that its
invariance under rotations becomes evident,

Hy=E,+Y V2 +1[b] x b5
1

+ > unplb] x 6115 x (B x b PP +

Ly ’”/ ey

Hp=& - > ;125 + 1[a} x &))"
i
Ly
+ Z v;]’]”,”” [[a' x aaT ](LF)
Lijj(j“j”’

X [@ x &jm](LF)]gO) 4.,

Var=— > wii V2T + 1[[b] x al]

RAFIST
X [by x @]V - (1.18)

The coefficients wf],?,., in (1.18) are the boson-fermion interaction
matrix elements,

wip = (ba;; I | Viplbpa,is J). (1.19)

Hermiticity of the Hamiltonian imposes further restrictions on the
parameters in (1.18). For instance, assuming the matrix elements
(1.19) to be real, one finds for the boson—fermion interaction that
wfj,? y = wf,Jz,] Other parametrizations of the boson—fermion in-
teraction are possible. Two of them have been frequently used in
calculations with the interacting boson—fermion model. They are

referred to as the multipole expansion,

Vg = 3wl (2)'VAL (] x 5] P x [a! x &, ] PO + .-,

w
L5 a
(1.20)

and the exchange expansion,

Var = D wippV2T +1:[[b] x @]9 x b, x ah ]IV i 4,
NALIOY

(1.21)
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where the colons (: - - - :) denote normal ordering. Normal ordering
in this case implies that a}, should stand on the left of @; with a
minus sign. For these parametrizations, Hermiticity implies the

rela}lons w,g,j = w;,(,L])J, and w,,,“ (=)’ wg,l’a in (1. 20}) and
;;(,, ), = w;f(,,)] in (1.21). The coefficients w,f, ), and w,](,, ) are

related to the matrix elements (1.19) in the followmg way:
"L ST L j J (J)
Wijy = — Z(—) (2J+1)y . T AN
J J
l ~! JI ;
wit), = Z(?J/-{-l){ l, JJ S }wﬁf,,?].. (1.22)
JI

In this expansion, the quantity in curly brackets denotes a Wigner
6j-symbol (de-Shalit and Talmi, 1963).

In most calculations, only terms up to two creation and two
annihilation operators have been retained. In that case, the
Hamiltonian Hy has been written down explicitly in Volume 1.
In order to write down the parts H, and Vg one needs to know
the values of j. As an example, we consider the case in which j
can take only one value, j = 3/2. Omitting the index j = 3/2
from the fermion operators, one has

H,.=§, —n\/Z[at % &]80)-}— Z _;_,U(LF)[[aT % af](Lp) % [d > d](LF)]gO),

Ly=0,2
Vr =wO[[s" x50 x [a? x| 1" 4w [[d" x 3]0 x [a? xa] )"
+ w'(l)[[dT xd]“) ><[ &](1)](()0)
+w'(2)[[ xd](2)><[a x&](z)](())
+ w/P[[st xd+d' x5]® x[a' xa]®)”
+wiy [[d xd]® x [a x &5, (1.23)
Here we have also used the fact that the Hamiltonian H is an

Hermitian operator, H' = H. There are thus three parameters,

7, v(® and v?, specifying the fermion Hamiltonian Hy and six

parameters, w;(so), w;‘;’), é(dl), w;fiz), w;(j) and wdd , specifying the

boson—fermion interaction Vi in its multipole form.
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1.4.2 Transttion operators

Operators inducing electromagnetic transitions of multipolarity
L also contain a part describing the bosons, TéL), and a part
describing the fermions, TF(‘L),

T =1 + 18", (1.24)
The structure of each term is:

TP = 6., + Zt(“bfb +-

(L) f(§0)6 + Zfz(kL)aTa’k eenl (125)

In principle, the transition operator T(*) contains also a boson—
fermion part, Téllé), of the form

T = Z 7 kaﬂa akbzbﬁ +oe- (1.26)

ikaf

This part, however, contains at least two creation and two an-
nihilation operators and is usually neglected. Again, since the
operators T/ must transform as tensors of rank L under rota-
tions, it is more convenient to rewrite (1.25) in coupled-tensor
form,

L L 1
T( ) t(()O)(SLO + Z tgll)[b; X bl’]ElL) + Tty
114

Teol = f§°)5m+Z lof <@ e (127)

In addition to being tensors under rotations, the electromagnetic
transition operators have a definite character under parity. If only
bosons with J¥ = 0% and 2% are considered, the parity of the
boson part T}(3L) is always positive. The fermion part TF(L) instead
can have either positive or negative parity. As will be discussed in
Part II, for each fermion the angular momentum j is built from an
orbital angular momentum ; and a spin s = 1/2. Its parity is thus
(—)%. When combining fermlon creation, a!, and annihilation, & i
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operators one must make sure that the combined parity is equal
to that of the transition. This implies that the coeflicients f(L)

Yi+th+L is +1 for electric transitions and —1 for

vanish unless (—
magnetic transitions.
Usually, only terms containing one creation and one annihilation

( ) :

operator are retained. The explicit form of T3 is then given in

Eq. (1.24) of Volume 1. In order to write down T one needs
to know the values of j. As an example, we consider again the
case j = 3/2 for which one obtains operators with multipolarity

L=0,1,2,3,
T(EO) f(o) +f'(°)[a % a](o)
T(Ml) fDlat x &,
T(E2) f(2)[a x a](2)
T(M3) f®lat x &)@ (1.28)

1.4.3 Independent parameters

Some of the parameters in the Hamiltonian and the transition op-
erators can be eliminated, by using the condition that the number
of bosons, Ny, and fermions, N, is conserved. For example, one
of the terms in Vi, (1.23), can be eliminated to yield

H.=§, - n'\/Z[a" x&](()o)

+ E %,v(Lp)[[af x a’r](LF) x [& x &](LF)]E)O)
Lr=0,2

Vor = wig [[d'xd]® x[a x&] V" +wi [[d! x d]V x [at x ] V]
+ wD[[dt xd]® x [at x &) @)LV
+ wP[[s" xd+d' x 5] x[al x&] P

+w;‘§’[[dfxd]<3>x[a x a1, (1.29)
with
, Ng o0 1oy _ H0) _ [ )
—w Waq & = Waq — VOwl ' . (1.30)

,’7—77—\/'4_ ss ?
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This elimination reduces the number of parameters in V3 by one,
and is similar to that discussed in Volume 1.

1.4.4 Special forms of the boson—fermion interaction

The form (1.18) of Vi is too general for a purely phenomeno-
logical analysis. On the basis of microscopic considerations, to
be discussed in Volume 3, it has been suggested (Iachello and
Scholten, 1979) that a simpler form may account for most of the
observed properties. In this simpler form only three terms are
retained. First, a monopole term, written in the form

VMON — EA [[d' x d] x [a} x &,]@1; (1.31)

second, a quadrupole term, written in the form
QUAD 3 - 5 to o (0),
ZI‘H )<d—{—d"><s)—+—x(df Xd)]m X [a]» xaj,](z)]o ;

(1.32)
and finally, an interaction, called exchange interaction, that takes
into account the fact that the bosons are fermion pairs (Talmi,
1981; Scholten and Dieperink, 1981; Otsuka et al., 1987). This
interaction can be written as

VEXC = 3" AL+ [ld x @]9 x [dx ol 9P, (1.33)

NN

33’3

and has been shown (Yoshida et al., 1988) to be of crucial impor-
tance in reproducing the signature dependence of electromagnetic
transitions in odd—even nuclei. Thus, two terms are taken from the
multipole expansion (1.20) and one term from the exchange expan-
sion (1.21). They can be converted to two-body matrix elements
(1.19) using the relations (1.22). In the exchange interaction one
could also have the terms

VEXC! = ZA :{lld" x &,]9 x [5 x a},]0)

+[[s" x @,]97 x [d x ]9}, (1.34)
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I s s d /L

Fig. 1-1 Schematic representation of the boson—fermion interaction. Graphs
(a), (b) and (c) represent the exchange interaction, while graphs (d), (e) and
(f) represent the direct interaction.

and

" : . . . .
Var© =3 A3 1 [ls" x &, x [5 x af] IR (1.35)
J

If only one single-particle orbit j is taken into account, these two
terms can be eliminated and included in (1.32) and (1.33), respec-
tively. When several j orbits are taken into account, these terms
must be retained since their dependence on the indices j and j' is
different from that of (1.32) and (1.33). Microscopic calculations
also indicate the presence of a direct interaction of the type (1.19)
between a fermion and a d boson (Talmi, 1981; Gelberg, 1983).

The boson-fermion interaction can be displayed graphically.
This is usually done by denoting the bosons by a double line,
since they are fermion pairs, the fermion by a single line and the
interaction by a wavy line. The direct and exchange interactions
are then displayed as in Fig. 1.1.

1.4.5 Transfer operators

Another set of operators of particular interest in nuclear physics
is formed by transfer operators. In the interacting boson—fermion



14 1 Operators

model, two types of transfer are possible, transfer of a nucleon pair
and transfer of a single nucleon. Two-nucleon transfer operators
are written entirely in terms of boson operators and were discussed
in Volume 1. The form of the operators describing a one-nucleon
transfer reaction depends on whether the number of bosons is
conserved or is changed by one. In the first case, the operators
are, in lowest approximation, given by the corresponding creation
and annihilation operators, schematically written as

(J) ZP(J) i

or, more explicitly, as

P(J) = pja’},m’
PO, = p, ., (1.37)

where j denotes the transferred angular momentum. However, for
the transfer operators (1.37), it has been found that the lowest
order is not sufficient to describe the experimental situation, since
it does not take into account the composite nature of the bosons.
Consequently, one needs to introduce higher-order terms. To next
order, these are written as

PO = 3 Dbtbyal,

afi
P = 5" b4b,a,, (1.38)
afi

or, in coupled-tensor form,
Pii(?-z-,m = Z ‘111' k] [bf x b ](k) X ‘ﬁ ](])
lll! ’j
P = Z (=) * it Bl x BIM x 1D, (1.39)

i,

where we have explicitly introduced the phase (—)""~* for the
operators to transform as spherical tensors under rotations. In
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the second case, when the number of bosons is changed by one,
the transfer operators are in lowest order

'(J) Z p'(J)b al

'(J) Zp’(.?)bl a;, (1.40)

or, more explicitly,

'(J) ZPI(J) b X a I](J)

P = Zp'm[b* x @]9 (1.41)

The operators with index + describe a transfer reaction from an
even—even to an even—odd nucleus, while the operators with index
— describe the inverse reaction.

1.4.6 Special forms of the transfer operators

It has been suggested (Scholten, 1980) that a special form of the
higher-order terms in the transfer operators is often suflicient to
describe the experimental situation. In this form only two terms
are retained in (1.39). The first is a monopole term,

Pom” = ¢ [[d! x ] x a]] ). (1.42)
The second is a quadrupole term,

PP - Z g l[(st xd+d" x 5) +x(d! x )@ x al,]D). (1.43)

Similar expressions hold for the substraction operators P?,(Jl me
More realistic but more complicated transfer operators have re-
cently been proposed by Sofia and Vitturi (1989) on the basis of

microscopic theory.



